IMINOETHER-ENAMIN TAUTOMERISM

L.Tőke, G.Blaskó, L.Szabó and Cs.Szántay

Institute of Organic Chemistry, Technical University, Budapest

(Received in UK 26 April 1972; accepted for publication 11 May 1972)

During investigations aiming at the synthesis of indole-alkaloids having the alloyohimbane skeleton, the appropriate ketone¹ was reacted with malonic acid dinitrile. On reducing the received product with NaBH₄, the derivative $\frac{1}{2}$ was obtained [mp. 184° /from dioxan/, IR $\sqrt{\frac{KBr}{max}}$ 1740 cm⁻¹ /C=0/; 2260 cm⁻¹ /C=N/; 3390 cm⁻¹ /N-H/; NMR /DMSO-d₆/: $\sqrt{3}$,58 /methoxy-protons/; $\sqrt{\frac{1}{2}}$ 10,58 /indole-NH/].

On treating $\frac{1}{2}$ in abs. methanol with base /NaOCH₃, NaOAc etc./, $\frac{1}{2}$ precipitated from the solution after 10-15 min. as colourless crystals [mp. 214-217°, IR $\frac{1}{2}$ max 1717 cm⁻¹ /C=0/; 1670 cm⁻¹ /C=N/; 2250 cm⁻¹ /C=N/; 3290 cm⁻¹ /imino-NH/; 3350 cm⁻¹ /indole-NH/]. Iminoether $\frac{1}{2}$ was obtained from ethanolic solution in a similar manner [mp. 203-205°, IR $\frac{1}{2}$ max 1735 cm⁻¹ /C=O/; 1660 cm⁻¹ /C=N/; 2250 cm⁻¹ /C=N/; 3200 cm⁻¹ and 3350 cm⁻¹ /N-H/].

Iminoether bases $\underline{\underline{b}}$ and $\underline{\underline{b}}$ are surprisingly stable materials, very likely owing to the neighbouring ester group. They are poorly soluble in organic solvents and can be stored for a long time under vacuum.

In solution, the tautomeric enamine forms of lb and lc are detectable, this being the first case of an iminoether-enamine tautomerism to be described in the literature according to our best knowledge.

In the IR spectrum of the solution of $\underline{\underline{b}}$ in DMSO intensive conjugated C=N streching frequency is observed at 2190 cm⁻¹ beside of the C=N /1670 cm⁻¹/, NH_{def.}/1630-1660 cm⁻¹/ and C=C /1600 cm⁻¹/ absorptions. The IR spectrum of $\underline{\underline{b}}$ in DMSO has nearly the same character as $\underline{\underline{b}}$ [2190 cm⁻¹ /C=N/; 1735 cm⁻¹ /C=O/; 1660 cm⁻¹ /C=N/; 1610-1660 cm⁻¹ /NH_{def.} and C=C/].

In the UV difference spectra² of solution of $\frac{1}{2}$ in methanol the characteristic enamine chromophore² /253 nm $\mathcal{E}=6630$ / is observed. In the presence of acid the latter absorption disappears while the one at 226 nm /originally $\mathcal{E}=7200$ / enhances.

On the bases of the NMR spectra it is possible to estimate the relative amount of the tautomeric forms. The iminoether itself represents two diastereoisomers. A similar phenomenon was observed with analogous cyanoesters 5 and with $\underline{1}\underline{d}$.

According to the NMR data in Table 1 and Table 2, there are about 15% enamine and 85% iminoether in the equilibria in DMSO solutions of $\frac{1}{2}$ and $\frac{1}{2}$, the ratio between the diastereomers is 1:3. In DMF solution of $\frac{1}{2}$ 36% enamine and 64% iminoether are to be found and the ratio of the diastereomers is about 1:1,3.

Treatment of $\underline{1}\underline{b}$ with water affords the ester $\underline{1}\underline{d}$ [mp. 171-173° /from methanol/, IR $\sqrt{\text{KBr}}$ 1730 cm⁻¹ and 1740 cm⁻¹ /C=0/; 2250 cm⁻¹ /C=N/; 3410 cm⁻¹ /N-H/, NMR /DMSO-d₆/: δ 3,69 /methoxy-protons/, δ 3,88 and 3,92 /methoxy-protons of cyanoester group/, δ 10,88 and 10,99 /indole-NH/], whilst with methanolic-HCl the acid-amide $\underline{1}\underline{e}$ [mp. 214-215° /from methanol/, IR $\sqrt{\text{KBr}}$ max 1690 cm⁻¹ /amid C=0/; 1730 cm⁻¹ /ester C=0/; 2260 cm⁻¹ /C=N/; 3220 cm⁻¹ and 3410 cm⁻¹ /amid- and indole-NH/, NMR /DMSO-d₆/: δ 3,67 /methoxy-protons/, δ 8,25 /NH₂-protons/, δ 11,5 /indole-NH/] was obtained. All the new materials / $\underline{1}\underline{e}$ - \underline{e} / had satisfactory elemental analyses and mass-spectra.

The iminoether <u>lb</u> alkylates carboxylic acids easily in **DMF**, by acid catalysis, even in room temperature, converting itself into <u>le</u>. The alkylating power of iminoethers is also known in the literature⁴.

Solv.	indole-NH		C=N-H		-о-сн ₃	-NH ²
DAGF-d ₇	10,73	/0,36/	6,65	/0,36/	3,90 and 3,95	8,8 /0,72/
-"-	10,89	/0,28/	6,48	/0,28/	3,80 and 3,85	
-"-	11,06	/0,36/			3,63 and 3,65	
dwor-d ₆	11,01		6,63	/0,61/	3,84 and 3,87	8,85 /0,30/
"	11,16		6,54	/0,24/	3,78	
"	11,21	i			3,65	

Table 1: NMR spectra of 1b /6/a

Solv.	indole-NH	C=N-H	-о-сн ₃	-0-CH ₂ -/CH ₃ /	-NH ₂
DMSO-d ₆	10,60	6,41	3,48	3,99 /q, J=6 cps/	8,6 /0,30/
"	10,65	6,30		4,05 /q, J=6 cps/	
"	10,80	!			

Table 2: NMR spectra of lc /6/a

a./ The sign intensities in brackets are given in proton units.

UV spectra was made by Unicam-SP-700, IR spectra by UR-10,

NMR spectra by Perkin-Elmer R-12 J.N.M.C 60, mass-spectra by

MS-902 at 70eV and 180° with accuracy of 2 ppm.

References

- Cs. Szántay, L. Tőke, K. Honty, Gy. Kalaus, J. Org. Chem., <u>32</u>, 423
 /1967/; Magyar Kém. Folyóirat, <u>74</u>, 342 /1968/
- 2./ S. Baldwin, J. Org. Chem., 26, 3288 /1961/
- 3./ Cs. Szántay, M.B. Bárczai, Chem. Ber., 102, 3963 /1969/; Magyar Kém. Folyóirat, 77, 160, /1971/
- 4./ W. Kantlehner, B. Funke, Chem. Ber., 104, 3711 /1971/